
Django Ratelimit Documentation
Release 2.0.0

James Socol

Feb 21, 2019

Contents

1 Project 1

2 Quickstart 3

3 Contents 5
3.1 Settings . 5
3.2 Using Django Ratelimit . 6
3.3 Ratelimit Keys . 10
3.4 Rates . 11
3.5 Security considerations . 12
3.6 Upgrade Notes . 14
3.7 Contributing . 17

4 Indices and tables 19

i

ii

CHAPTER 1

Project

Django Ratelimit is a ratelimiting decorator for Django views.

Code https://github.com/jsocol/django-ratelimit

License Apache Software License

Issues https://github.com/jsocol/django-ratelimit/issues

Documentation http://django-ratelimit.readthedocs.org/

1

https://travis-ci.org/jsocol/django-ratelimit
https://github.com/jsocol/django-ratelimit
https://github.com/jsocol/django-ratelimit/issues
http://django-ratelimit.readthedocs.org/

Django Ratelimit Documentation, Release 2.0.0

2 Chapter 1. Project

CHAPTER 2

Quickstart

Install:

pip install django-ratelimit

Use as a decorator in views.py:

from ratelimit.decorators import ratelimit

@ratelimit(key='ip')
def myview(request):

...

@ratelimit(key='ip', rate='100/h')
def secondview(request):

...

3

Django Ratelimit Documentation, Release 2.0.0

4 Chapter 2. Quickstart

CHAPTER 3

Contents

3.1 Settings

3.1.1 RATELIMIT_CACHE_PREFIX

An optional cache prefix for ratelimit keys (in addition to the PREFIX value defined on the cache backend). Defaults
to 'rl:'.

3.1.2 RATELIMIT_ENABLE

Set to False to disable rate-limiting across the board. Defaults to True.

May be useful during tests with Django’s override_settings() testing tool, for example:

from django.test import override_settings

with override_settings(RATELIMIT_ENABLE=False):
result = call_the_view()

3.1.3 RATELIMIT_USE_CACHE

The name of the cache (from the CACHES dict) to use. Defaults to 'default'.

3.1.4 RATELIMIT_VIEW

The string import path to a view to use when a request is ratelimited, in conjunction with RatelimitMiddleware,
e.g. 'myapp.views.ratelimited'. Has no default - you must set this to use RatelimitMiddleware.

5

https://docs.djangoproject.com/en/2.0/topics/testing/tools/#django.test.override_settings.

Django Ratelimit Documentation, Release 2.0.0

3.1.5 RATELIMIT_FAIL_OPEN

Whether to allow requests when the cache backend fails. Defaults to False.

3.2 Using Django Ratelimit

3.2.1 Use as a decorator

Import:

from ratelimit.decorators import ratelimit

@ratelimit(group=None, key=, rate=None, method=ALL, block=False)

Parameters

• group – None A group of rate limits to count together. Defaults to the dotted name of the
view.

• key – What key to use, see Keys.

• rate – ‘5/m’ The number of requests per unit time allowed. Valid units are:

– s - seconds

– m - minutes

– h - hours

– d - days

Also accepts callables. See Rates.

• method – ALL Which HTTP method(s) to rate-limit. May be a string, a list/tuple of
strings, or the special values for ALL or UNSAFE (which includes POST, PUT, DELETE
and PATCH).

• block – False Whether to block the request instead of annotating.

HTTP Methods

Each decorator can be limited to one or more HTTP methods. The method= argument accepts a method name (e.g.
'GET') or a list or tuple of strings (e.g. ('GET', 'OPTIONS')).

There are two special shortcuts values, both accessible from the ratelimit decorator, the RatelimitMixin
class, or the is_ratelimited helper, as well as on the root ratelimit module:

from ratelimit.decorators import ratelimit

@ratelimit(key='ip', method=ratelimit.ALL)
@ratelimit(key='ip', method=ratelimit.UNSAFE)
def myview(request):

pass

ratelimit.ALL applies to all HTTP methods. ratelimit.UNSAFE is a shortcut for ('POST', 'PUT',
'PATCH', 'DELETE').

6 Chapter 3. Contents

Django Ratelimit Documentation, Release 2.0.0

Examples

@ratelimit(key='ip', rate='5/m')
def myview(request):

Will be true if the same IP makes more than 5 POST
requests/minute.
was_limited = getattr(request, 'limited', False)
return HttpResponse()

@ratelimit(key='ip', rate='5/m', block=True)
def myview(request):

If the same IP makes >5 reqs/min, will raise Ratelimited
return HttpResponse()

@ratelimit(key='post:username', rate='5/m', method=['GET', 'POST'])
def login(request):

If the same username is used >5 times/min, this will be True.
The `username` value will come from GET or POST, determined by the
request method.
was_limited = getattr(request, 'limited', False)
return HttpResponse()

@ratelimit(key='post:username', rate='5/m')
@ratelimit(key='post:tenant', rate='5/m')
def login(request):

Use multiple keys by stacking decorators.
return HttpResponse()

@ratelimit(key='get:q', rate='5/m')
@ratelimit(key='post:q', rate='5/m')
def search(request):

These two decorators combine to form one rate limit: the same search
query can only be tried 5 times a minute, regardless of the request
method (GET or POST)
return HttpResponse()

@ratelimit(key='ip', rate='4/h')
def slow(request):

Allow 4 reqs/hour.
return HttpResponse()

rate = lambda r: None if request.user.is_authenticated else '100/h'
@ratelimit(key='ip', rate=rate)
def skipif1(request):

Only rate limit anonymous requests
return HttpResponse()

@ratelimit(key='user_or_ip', rate='10/s')
@ratelimit(key='user_or_ip', rate='100/m')
def burst_limit(request):

Implement a separate burst limit.
return HttpResponse()

@ratelimit(group='expensive', key='user_or_ip', rate='10/h')
def expensive_view_a(request):

return something_expensive()

(continues on next page)

3.2. Using Django Ratelimit 7

Django Ratelimit Documentation, Release 2.0.0

(continued from previous page)

@ratelimit(group='expensive', key='user_or_ip', rate='10/h')
def expensive_view_b(request):

Shares a counter with expensive_view_a
return something_else_expensive()

@ratelimit(key='header:x-cluster-client-ip')
def post(request):

Uses the X-Cluster-Client-IP header value.
return HttpResponse()

@ratelimit(key=lambda r: r.META.get('HTTP_X_CLUSTER_CLIENT_IP',
r.META['REMOTE_ADDR'])

def myview(request):
Use `X-Cluster-Client-IP` but fall back to REMOTE_ADDR.
return HttpResponse()

Class-Based Views

New in version 0.5.

The @ratelimit decorator also works on class-based view methods, though make sure the ‘‘method‘‘ argument
matches the decorator:

class MyView(View):
@ratelimit(key='ip', method='POST')
def post(self, request, *args):

Something expensive...

Note: Unless given an explicit group argument, different methods of a class-based view will be limited separate.

3.2.2 Class-Based View Mixin

class ratelimit.mixins.RatelimitMixin

New in version 0.4.

Ratelimits can also be applied to class-based views with the ratelimit.mixins.RatelimitMixin mixin.
They are configured via class attributes that are the same as the decorator, prefixed with ratelimit_, e.g.:

class MyView(RatelimitMixin, View):
ratelimit_key = 'ip'
ratelimit_rate = '10/m'
ratelimit_block = False
ratelimit_method = 'GET'

def get(self, request, *args, **kwargs):
Calculate expensive report...

Changed in version 0.5: The name of the mixin changed from RateLimitMixin to RatelimitMixin for con-
sistency.

8 Chapter 3. Contents

Django Ratelimit Documentation, Release 2.0.0

3.2.3 Helper Function

In some cases the decorator is not flexible enough. If this is an issue you use the is_ratelimited helper function.
It’s similar to the decorator.

Import:

from ratelimit.utils import is_ratelimited

is_ratelimited(request, group=None, key=, rate=None, method=ALL, increment=False)

Parameters

• request – None The HTTPRequest object.

• group – None A group of rate limits to count together. Defaults to the dotted name of the
view.

• key – What key to use, see Keys.

• rate – ‘5/m’ The number of requests per unit time allowed. Valid units are:

– s - seconds

– m - minutes

– h - hours

– d - days

Also accepts callables. See Rates.

• method – ALL Which HTTP method(s) to rate-limit. May be a string, a list/tuple, or None
for all methods.

• increment – False Whether to increment the count or just check.

3.2.4 Exceptions

class ratelimit.exceptions.Ratelimited
If a request is ratelimited and block is set to True, Ratelimit will raise ratelimit.exceptions.
Ratelimited.

This is a subclass of Django’s PermissionDenied exception, so if you don’t need any special handling
beyond the built-in 403 processing, you don’t have to do anything.

If you are setting handler403 in your root URLconf, you can catch this exception in your custom view to
return a different response, for example:

def handler403(request, exception=None):
if isinstance(exception, Ratelimited):

return HttpResponse('Sorry you are blocked', status=429)
return HttpResponseForbidden('Forbidden')

3.2.5 Middleware

There is optional middleware to use a custom view to handle Ratelimited exceptions.

To use it, add ratelimit.middleware.RatelimitMiddleware to your MIDDLEWARE_CLASSES (toward
the bottom of the list) and set RATELIMIT_VIEW to the full path of a view you want to use.

3.2. Using Django Ratelimit 9

https://docs.djangoproject.com/en/2.1/topics/http/urls/#error-handling

Django Ratelimit Documentation, Release 2.0.0

The view specified in RATELIMIT_VIEW will get two arguments, the request object (after ratelimit processing)
and the exception.

3.3 Ratelimit Keys

The key= argument to the decorator takes either a string or a callable.

3.3.1 Common keys

The following string values for key= provide shortcuts to commonly used ratelimit keys:

• 'ip' - Use the request IP address (i.e. request.META['REMOTE_ADDR'])

Note: If you are using a reverse proxy, make sure this value is correct or use an appropriate
header: value. See the security notes.

• 'get:X' - Use the value of request.GET.get('X', '').

• 'post:X' - Use the value of request.POST.get('X', '').

• 'header:x-x' - Use the value of request.META.get('HTTP_X_X', '').

Note: The value right of the colon will be translated to all-caps and any dashes will be replaced with
underscores, e.g.: x-client-ip => X_CLIENT_IP.

• 'user' - Use an appropriate value from request.user. Do not use with unauthenticated users.

• 'user_or_ip' - Use an appropriate value from request.user if the user is authenticated, otherwise use
request.META['REMOTE_ADDR'] (see the note above about reverse proxies).

Note: Missing headers, GET, and POST values will all be treated as empty strings, and ratelimited in the same bucket.

Warning: Using user-supplied data, like data from GET and POST or headers directly from the User-Agent can
allow users to trivially opt out of ratelimiting. See the note in the security chapter.

3.3.2 String values

Other string values not from the list above will be treated as the dotted Python path to a callable. See below for more
on callables.

3.3.3 Callable values

New in version 0.3.

Changed in version 0.5: Added support for python path to callables.

Changed in version 0.6: Callable was mistakenly only passed the request, now also gets group as documented.

10 Chapter 3. Contents

Django Ratelimit Documentation, Release 2.0.0

If the value of key= is a callable, or the path to a callable, that callable will be called with two arguments, the group
and the request object. It should return a bytestring or unicode object, e.g.:

def my_key(group, request):
return request.META['REMOTE_ADDR'] + request.user.username

3.4 Rates

3.4.1 Simple rates

Simple rates are of the form X/u where X is a number of requests and u is a unit from this list:

• s - second

• m - minute

• h - hour

• d - day

(For example, you can read 5/s as “five per second.”)

You may also specify a number of units, i.e.: X/Yu where Y is a number of units. If u is omitted, it is presumed to be
seconds. So, the following are equivalent, and all mean “one hundred requests per five minutes”:

• 100/5m

• 100/300s

• 100/300

3.4.2 Callables

New in version 0.5.

Rates can also be callables (or dotted paths to callables, which are assumed if there is no / in the value).

Callables receive two values, the group and the request object. They should return a simple rate string, or a tuple
of integers (count, seconds). For example:

def my_rate(group, request):
if request.user.is_authenticated:

return '1000/m'
return '100/m'

Or equivalently:

def my_rate_tuples(group, request):
if request.user.is_authenticated:

return (1000, 60)
return (100, 60)

Callables can return 0 in the first place to disallow any requests (e.g.: 0/s, (0, 60)). They can return None for
“no ratelimit”.

3.4. Rates 11

Django Ratelimit Documentation, Release 2.0.0

3.5 Security considerations

3.5.1 Client IP address

IP address is an extremely common rate limit key, so it is important to configure correctly, especially in the equally-
common case where Django is behind a load balancer or other reverse proxy.

Django-Ratelimit is not the correct place to handle reverse proxies and adjust the IP address, and patches dealing with
it will not be accepted. There is too much variation in the wild to handle it safely.

This is the same reason Django dropped SetRemoteAddrFromForwardedFor middleware in 1.1: no such
“mechanism can be made reliable enough for general-purpose use” and it “may lead developers to assume that the
value of REMOTE_ADDR is ‘safe’.”

Risks

Mishandling client IP data creates an IP spoofing vector that allows attackers to circumvent IP ratelimiting entirely.
Consider an attacker with the real IP address 3.3.3.3 that adds the following to a request:

X-Forwarded-For: 1.2.3.4

A misconfigured web server may pass the header value along, e.g.:

X-Forwarded-For: 3.3.3.3, 1.2.3.4

Alternatively, if the web server sends a different header, like X-Cluster-Client-IP or X-Real-IP, and passes
along the spoofed X-Forwarded-For header unchanged, a mistake in ratelimit or a misconfiguration in Django
could read the spoofed header instead of the intended one.

Remediation

There are two options, configuring django-ratelimit or adding global middleware. Which makes sense depends on
your setup.

Middleware

Writing a small middleware class to set REMOTE_ADDR to the actual client IP address is generally simple:

class ReverseProxy(object):
def process_request(self, request):

request.META['REMOTE_ADDR'] = # [...]

where # [...] depends on your environment. This middleware should be close to the top of the list:

MIDDLEWARE_CLASSES = (
'path.to.ReverseProxy',
...

)

Then the @ratelimit decorator can be used with the ip key:

@ratelimit(key='ip', rate='10/s')

12 Chapter 3. Contents

http://en.wikipedia.org/wiki/Talk:X-Forwarded-For#Variations
https://docs.djangoproject.com/en/2.1/releases/1.1/#removed-setremoteaddrfromforwardedfor-middleware

Django Ratelimit Documentation, Release 2.0.0

Ratelimit keys

Alternatively, if the client IP address is in a simple header (i.e. a header like X-Real-IP that only contains the client
IP, unlike X-Forwarded-For which may contain intermediate proxies) you can use a header: key:

@ratelimit(key='header:x-real-ip', rate='10/s')

3.5.2 Brute force attacks

One of the key uses of ratelimiting is preventing brute force or dictionary attacks against login forms. These attacks
generally take one of a few forms:

• One IP address trying one username with many passwords.

• Many IP addresses trying one username with many passwords.

• One IP address trying many usernames with a few common passwords.

• Many IP addresses trying many usernames with one or a few common passwords.

Note: Unfortunately, the fourth case of many IPs trying many usernames can be difficult to distinguish from regular
user behavior and requires additional signals, such as a consistent user agent or a common network prefix.

Protecting against the single IP address cases is easy:

@ratelimit(key='ip')
def login_view(request):

pass

Also limiting by username provides better protection:

@ratelimit(key='ip')
@ratelimit(key='post:username')
def login_view(request):

pass

Using passwords as key values is not recommended. Key values are never stored in a raw form, even as cache keys,
but they are constructed with a fast hash function.

Denial of Service

However, limiting based on field values may open a denial of service vector against your users, preventing them from
logging in.

For pages like login forms, consider implenting a soft blocking mechanism, such as requiring a captcha, rather than a
hard block with a PermissionDenied error.

Network Address Translation

Depending on your profile of your users, you may have many users behind NAT (e.g. users in schools or in corporate
networks). It is reasonable to set a higher limit on a per-IP limit than on a username or password limit.

3.5. Security considerations 13

http://en.wikipedia.org/wiki/Denial-of-service_attack?oldformat=true

Django Ratelimit Documentation, Release 2.0.0

3.5.3 User-supplied Data

Using data from GET (key='get:X') POST (key='post:X') or headers (key='header:x-x') that are pro-
vided directly by the browser or other client presents a risk. Unless there is some requirement of the attack that
requires the client not change the value (for example, attempting to brute force a password requires that the username
be consistent) clients can trivially change these values on every request.

Headers that are provided by web servers or reverse proxies should be independently audited to ensure they cannot be
affected by clients.

The User-Agent header is especially dangerous, since bad actors can change it on every request, and many good
actors may share the same value.

3.6 Upgrade Notes

See also the CHANGELOG <../CHANGELOG>.

3.6.1 From <=0.4 to 0.5

Quickly:

• Rate limits are now counted against fixed, instead of sliding, windows.

• Rate limits are no longer shared between methods by default.

• Change ip=True to key='ip'.

• Drop ip=False.

• A key must always be specified. If using without an explicit key, add key='ip'.

• Change fields='foo' to post:foo or get:foo.

• Change keys=callable to key=callable.

• Change skip_if to a callable rate=<callable> method (see Rates.

• Change RateLimitMixin to RatelimitMixin (note the lowercase l).

• Change ratelimit_ip=True to ratelimit_key='ip'.

• Change ratelimit_fields='foo' to post:foo or get:foo.

• Change ratelimit_keys=callable to ratelimit_key=callable.

Fixed windows

Before 0.5, rates were counted against a sliding window, so if the rate limit was 1/m, and three requests came in:

1.2.3.4 [09/Sep/2014:12:25:03] ...
1.2.3.4 [09/Sep/2014:12:25:53] ... <RATE LIMITED>
1.2.3.4 [09/Sep/2014:12:25:59] ... <RATE LIMITED>

Even though the third request came nearly two minutes after the first request, the second request moved the window.
Good actors could easily get caught in this, even trying to implement reasonable back-offs.

Starting in 0.5, windows are fixed, and staggered throughout a given period based on the key value, so the third request,
above would not be rate limited (it’s possible neither would the second one).

14 Chapter 3. Contents

Django Ratelimit Documentation, Release 2.0.0

Warning: That means that given a rate of X/u, you may see up to 2 * X requests in a short period of time.
Make sure to set X accordingly if this is an issue.

This change still limits bad actors while being far kinder to good actors.

Staggering windows

To avoid a situation where all limits expire at the top of the hour, windows are automatically staggered throughout
their period based on the key value. So if, for example, two IP addresses are hitting hourly limits, instead of both of
those limits expiring at 06:00:00, one might expire at 06:13:41 (and subsequently at 07:13:41, etc) and the other might
expire at 06:48:13 (and 07:48:13, etc).

Sharing rate limits

Before 0.5, rate limits were shared between methods based only on their keys. This was very confusing and unintuitive,
and is far from the least-surprising thing. For example, given these three views:

@ratelimit(ip=True, field='username')
def both(request):

pass

@ratelimit(ip=False, field='username')
def field_only(request):

pass

@ratelimit(ip=True)
def ip_only(request):

pass

The pair both and field_only shares one rate limit key based on all requests to either (and any other views)
containing the same username key (in GET or POST), regardless of IP address.

The pair both and ip_only shares one rate limit key based on the client IP address, along with all other views.

Thus, it’s extremely difficult to determine exactly why a request is getting rate limited.

In 0.5, methods never share rate limits by default. Instead, limits are based on a combination of the group, rate, key
value, and HTTP methods to which the decorator applies (i.e. not the method of the request). This better supports
common use cases and stacking decorators, and still allows decorators to be shared.

For example, this implements an hourly rate limit with a per-minute burst rate limit:

@ratelimit(key='ip', rate='100/m')
@ratelimit(key='ip', rate='1000/h')
def myview(request):

pass

However, this view is limited separately from another view with the same keys and rates:

@ratelimit(key='ip', rate='100/m')
@ratelimit(key='ip', rate='1000/h')
def anotherview(request):

pass

To cause the views to share a limit, explicitly set the group argument:

3.6. Upgrade Notes 15

http://en.wikipedia.org/wiki/Principle_of_least_astonishment

Django Ratelimit Documentation, Release 2.0.0

@ratelimit(group='lists', key='user', rate='100/h')
def user_list(request):

pass

@ratelimit(group='lists', key='user', rate='100/h')
def group_list(request):

pass

You can also stack multiple decorators with different sets of applicable methods:

@ratelimit(key='ip', method='GET', rate='1000/h')
@ratelimit(key='ip', method='POST', rate='100/h')
def maybe_expensive(request):

pass

This allows a total of 1,100 requests to this view in one hour, while this would only allow 1000, but still only 100
POSTs:

@ratelimit(key='ip', method=['GET', 'POST'], rate='1000/h')
@ratelimit(key='ip', method='POST', rate='100/h')
def maybe_expensive(request):

pass

And these two decorators would not share a rate limit:

@ratelimit(key='ip', method=['GET', 'POST'], rate='100/h')
def foo(request):

pass

@ratelimit(key='ip', method='GET', rate='100/h')
def bar(request):

pass

But these two do share a rate limit:

@ratelimit(group='a', key='ip', method=['GET', 'POST'], rate='1/s')
def foo(request):

pass

@ratelimit(group='a', key='ip', method=['POST', 'GET'], rate='1/s')
def bar(request):

pass

Using multiple decorators

A single @ratelimit decorator used to be able to ratelimit against multiple keys, e.g., before 0.5:

@ratelimit(ip=True, field='username', keys=mykeysfunc)
def someview(request):

...

To simplify both the internals and the question of what limits apply, each decorator now tracks exactly one rate, but
decorators can be more reliably stacked (c.f. some examples in the section above).

The pre-0.5 example above would need to become four decorators:

16 Chapter 3. Contents

Django Ratelimit Documentation, Release 2.0.0

@ratelimit(key='ip')
@ratelimit(key='post:username')
@ratelimit(key='get:username')
@ratelimit(key=mykeysfunc)
def someview(request):

...

As documented above, however, this allows powerful new uses, like burst limits and distinct GET/POST limits.

3.7 Contributing

3.7.1 Set Up

Create a virtualenv and install Django with pip:

$ pip install Django

3.7.2 Running the Tests

Running the tests is as easy as:

$./run.sh test

You may also run the test on multiple versions of Django using tox.

• First install tox:

$ pip install tox

• Then run the tests with tox:

$ tox

3.7.3 Code Standards

I ask two things for pull requests.

• The flake8 tool must not report any violations.

• All tests, including new tests where appropriate, must pass.

3.7. Contributing 17

http://www.virtualenv.org/en/latest/
http://www.pip-installer.org/en/latest/
https://pypi.python.org/pypi/flake8

Django Ratelimit Documentation, Release 2.0.0

18 Chapter 3. Contents

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

19

Django Ratelimit Documentation, Release 2.0.0

20 Chapter 4. Indices and tables

Index

I
is_ratelimited() (built-in function), 9

R
ratelimit() (built-in function), 6
ratelimit.exceptions.Ratelimited (built-in

class), 9
ratelimit.mixins.RatelimitMixin (built-in

class), 8

21

	Project
	Quickstart
	Contents
	Settings
	Using Django Ratelimit
	Ratelimit Keys
	Rates
	Security considerations
	Upgrade Notes
	Contributing

	Indices and tables

