

Django Ratelimit

Project

Django Ratelimit is a ratelimiting decorator for Django views.

[image: https://travis-ci.org/jsocol/django-ratelimit.png?branch=master]
 [https://travis-ci.org/jsocol/django-ratelimit]

	Code:	https://github.com/jsocol/django-ratelimit

	License:	Apache Software License

	Issues:	https://github.com/jsocol/django-ratelimit/issues

	Documentation:	http://django-ratelimit.readthedocs.org/

Quickstart

Install:

pip install django-ratelimit

Use as a decorator in views.py:

from ratelimit.decorators import ratelimit

@ratelimit(key='ip')
def myview(request):
 # ...

@ratelimit(key='ip', rate='100/h')
def secondview(request):
 # ...

Contents

	Settings

	Using Django Ratelimit
	Use as a decorator

	Class-Based View Mixin

	Helper Function

	Exceptions

	Middleware

	Ratelimit Keys
	Common keys

	String values

	Callable values

	Rates
	Simple rates

	Callables

	Security considerations
	Client IP address

	Brute force attacks

	User-supplied Data

	Upgrade Notes
	From <=0.4 to 0.5

	Contributing
	Set Up

	Running the Tests

	Code Standards

Indices and tables

	Index

	Module Index

	Search Page

Settings

	RATELIMIT_CACHE_PREFIX:

	An optional cache prefix for ratelimit keys (in addition to the
PREFIX value). rl:

	RATELIMIT_ENABLE:

	Set to False to disable rate-limiting across the board. True

	RATELIMIT_USE_CACHE:

	Which cache (from the CACHES dict) to use. default

	RATELIMIT_VIEW:

	A view to use when a request is ratelimited, in conjunction with
RatelimitMiddleware. (E.g.: 'myapp.views.ratelimited'.)
None

Using Django Ratelimit

Use as a decorator

Import:

from ratelimit.decorators import ratelimit

	
@ratelimit(group=None, key=, rate=None, method=ALL, block=False)

	

	Parameters:	
	group – None A group of rate limits to count together. Defaults to the
dotted name of the view.

	key – What key to use, see Keys.

	rate – ‘5/m’ The number of requests per unit time allowed. Valid
units are:

	s - seconds

	m - minutes

	h - hours

	d - days

Also accepts callables. See Rates.

	method – ALL Which HTTP method(s) to rate-limit. May be a string, a
list/tuple of strings, or the special values for ALL or
UNSAFE (which includes POST, PUT, DELETE and
PATCH).

	block – False Whether to block the request instead of annotating.

HTTP Methods

Each decorator can be limited to one or more HTTP methods. The
method= argument accepts a method name (e.g. 'GET') or a list or
tuple of strings (e.g. ('GET', 'OPTIONS')).

There are two special shortcuts values, both accessible from the
ratelimit decorator, the RatelimitMixin class, or the
is_ratelimited helper, as well as on the root ratelimit module:

from ratelimit.decorators import ratelimit

@ratelimit(key='ip', method=ratelimit.ALL)
@ratelimit(key='ip', method=ratelimit.UNSAFE)
def myview(request):
 pass

ratelimit.ALL applies to all HTTP methods. ratelimit.UNSAFE
is a shortcut for ('POST', 'PUT', 'PATCH', 'DELETE').

Examples

@ratelimit(key='ip', rate='5/m')
def myview(request):
 # Will be true if the same IP makes more than 5 POST
 # requests/minute.
 was_limited = getattr(request, 'limited', False)
 return HttpResponse()

@ratelimit(key='ip', rate='5/m', block=True)
def myview(request):
 # If the same IP makes >5 reqs/min, will raise Ratelimited
 return HttpResponse()

@ratelimit(key='post:username', rate='5/m', method=['GET', 'POST'])
def login(request):
 # If the same username is used >5 times/min, this will be True.
 # The `username` value will come from GET or POST, determined by the
 # request method.
 was_limited = getattr(request, 'limited', False)
 return HttpResponse()

@ratelimit(key='post:username', rate='5/m')
@ratelimit(key='post:password', rate='5/m')
def login(request):
 # Use multiple keys by stacking decorators.
 return HttpResponse()

@ratelimit(key='get:q', rate='5/m')
@ratelimit(key='post:q', rate='5/m')
def search(request):
 # These two decorators combine to form one rate limit: the same search
 # query can only be tried 5 times a minute, regardless of the request
 # method (GET or POST)
 return HttpResponse()

@ratelimit(key='ip', rate='4/h')
def slow(request):
 # Allow 4 reqs/hour.
 return HttpResponse()

rate = lambda r: None if request.user.is_authenticated() else '100/h'
@ratelimit(key='ip', rate=rate)
def skipif1(request):
 # Only rate limit anonymous requests
 return HttpResponse()

@ratelimit(key='user_or_ip', rate='10/s')
@ratelimit(key='user_or_ip', rate='100/m')
def burst_limit(request):
 # Implement a separate burst limit.
 return HttpResponse()

@ratelimit(group='expensive', key='user_or_ip', rate='10/h')
def expensive_view_a(request):
 return something_expensive()

@ratelimit(group='expensive', key='user_or_ip', rate='10/h')
def expensive_view_b(request):
 # Shares a counter with expensive_view_a
 return something_else_expensive()

@ratelimit(key='header:x-cluster-client-ip')
def post(request):
 # Uses the X-Cluster-Client-IP header value.
 return HttpResponse()

@ratelimit(key=lambda r: r.META.get('HTTP_X_CLUSTER_CLIENT_IP',
 r.META['REMOTE_ADDR'])
def myview(request):
 # Use `X-Cluster-Client-IP` but fall back to REMOTE_ADDR.
 return HttpResponse()

Class-Based Views

New in version 0.5.

The @ratelimit decorator also works on class-based view methods,
though make sure the ``method`` argument matches the decorator:

class MyView(View):
 @ratelimit(key='ip', method='POST')
 def post(self, request, *args):
 # Something expensive...

Note

Unless given an explicit group argument, different methods of a
class-based view will be limited separate.

Class-Based View Mixin

	
class ratelimit.mixins.RatelimitMixin

	

New in version 0.4.

Ratelimits can also be applied to class-based views with the
ratelimit.mixins.RatelimitMixin mixin. They are configured via class
attributes that are the same as the decorator,
prefixed with ratelimit_, e.g.:

class MyView(RatelimitMixin, View):
 ratelimit_key = 'ip'
 ratelimit_rate = '10/m'
 ratelimit_block = False
 ratelimit_method = 'GET'

 def get(self, request, *args, **kwargs):
 # Calculate expensive report...

Changed in version 0.5: The name of the mixin changed from RateLimitMixin to
RatelimitMixin for consistency.

Helper Function

In some cases the decorator is not flexible enough. If this is an
issue you use the is_ratelimited helper function. It’s similar to
the decorator.

Import:

from ratelimit.utils import is_ratelimited

	
is_ratelimited(request, group=None, key=, rate=None, method=ALL, increment=False)

	

	Parameters:	
	request – None The HTTPRequest object.

	group – None A group of rate limits to count together. Defaults to the
dotted name of the view.

	key – What key to use, see Keys.

	rate – ‘5/m’ The number of requests per unit time allowed. Valid
units are:

	s - seconds

	m - minutes

	h - hours

	d - days

Also accepts callables. See Rates.

	method – ALL Which HTTP method(s) to rate-limit. May be a string, a
list/tuple, or None for all methods.

	increment – False Whether to increment the count or just check.

Exceptions

	
class ratelimit.exceptions.Ratelimited

	If a request is ratelimited and block is set to True,
Ratelimit will raise ratelimit.exceptions.Ratelimited.

This is a subclass of Django’s PermissionDenied exception, so
if you don’t need any special handling beyond the built-in 403
processing, you don’t have to do anything.

Middleware

There is optional middleware to use a custom view to handle Ratelimited
exceptions.

To use it, add ratelimit.middleware.RatelimitMiddleware to your
MIDDLEWARE_CLASSES (toward the bottom of the list) and set
RATELIMIT_VIEW to the full path of a view you want to use.

The view specified in RATELIMIT_VIEW will get two arguments, the
request object (after ratelimit processing) and the exception.

Ratelimit Keys

The key= argument to the decorator takes either a string or a
callable.

Common keys

The following string values for key= provide shortcuts to commonly
used ratelimit keys:

	'ip' - Use the request IP address (i.e.
request.META['REMOTE_ADDR'])

Note

If you are using a reverse proxy, make sure this value is correct
or use an appropriate header: value. See the security notes.

	'get:X' - Use the value of request.GET.get('X', '').

	'post:X' - Use the value of request.POST.get('X', '').

	
	'header:x-x' - Use the value of ``request.META.get(‘HTTP_X_X’,

	‘’)``.

Note

The value right of the colon will be translated to all-caps and
any dashes will be replaced with underscores, e.g.: x-client-ip
=> X_CLIENT_IP.

	'user' - Use an appropriate value from request.user. Do not use
with unauthenticated users.

	'user_or_ip' - Use an appropriate value from request.user if
the user is authenticated, otherwise use
request.META['REMOTE_ADDR'] (see the note above about reverse
proxies).

Note

Missing headers, GET, and POST values will all be treated as empty
strings, and ratelimited in the same bucket.

Warning

Using user-supplied data, like data from GET and POST or headers
directly from the User-Agent can allow users to trivially opt out of
ratelimiting. See the note in the security chapter.

String values

Other string values not from the list above will be treated as the
dotted Python path to a callable. See below for
more on callables.

Callable values

New in version 0.3.

Changed in version 0.5: Added support for python path to callables.

Changed in version 0.6: Callable was mistakenly only passed the request, now also gets group as documented.

If the value of key= is a callable, or the path to a callable, that
callable will be called with two arguments, the group and the request object. It should return a
bytestring or unicode object, e.g.:

def my_key(group, request):
 return request.META['REMOTE_ADDR'] + request.user.username

Rates

Simple rates

Simple rates are of the form X/u where X is a number of requests
and u is a unit from this list:

	s - second

	m - minute

	h - hour

	d - day

(For example, you can read 5/s as “five per second.”)

You may also specify a number of units, i.e.: X/Yu where Y is a
number of units. If u is omitted, it is presumed to be seconds. So,
the following are equivalent, and all mean “one hundred requests per
five minutes”:

	100/5m

	100/300s

	100/300

Callables

New in version 0.5.

Rates can also be callables (or dotted paths to callables, which are
assumed if there is no / in the value).

Callables receive two values, the group and the
request object. They should return a simple rate string, or a tuple
of integers (count, seconds). For example:

def my_rate(group, request):
 if request.user.is_authenticated():
 return '1000/m'
 return '100/m'

Or equivalently:

def my_rate_tuples(group, request):
 if request.user.is_authenticated():
 return (1000, 60)
 return (100, 60)

Callables can return 0 in the first place to disallow any requests
(e.g.: 0/s, (0, 60)). They can return None for “no
ratelimit”.

Security considerations

Client IP address

IP address is an extremely common rate limit key,
so it is important to configure correctly, especially in the
equally-common case where Django is behind a load balancer or other
reverse proxy.

Django-Ratelimit is not the correct place to handle reverse proxies
and adjust the IP address, and patches dealing with it will not be
accepted. There is too much variation [http://en.wikipedia.org/wiki/Talk:X-Forwarded-For#Variations] in the wild to handle it
safely.

This is the same reason Django dropped [https://docs.djangoproject.com/en/1.3/releases/1.1/#removed-setremoteaddrfromforwardedfor-middleware]
SetRemoteAddrFromForwardedFor middleware in 1.1: no such “mechanism
can be made reliable enough for general-purpose use” and it “may lead
developers to assume that the value of REMOTE_ADDR is ‘safe’.”

Risks

Mishandling client IP data creates an IP spoofing vector that allows
attackers to circumvent IP ratelimiting entirely. Consider an attacker
with the real IP address 3.3.3.3 that adds the following to a request:

X-Forwarded-For: 1.2.3.4

A misconfigured web server may pass the header value along, e.g.:

X-Forwarded-For: 3.3.3.3, 1.2.3.4

Alternatively, if the web server sends a different header, like
X-Cluster-Client-IP or X-Real-IP, and passes along the
spoofed X-Forwarded-For header unchanged, a mistake in ratelimit or
a misconfiguration in Django could read the spoofed header instead of
the intended one.

Remediation

There are two options, configuring django-ratelimit or adding global
middleware. Which makes sense depends on your setup.

Middleware

Writing a small middleware class to set REMOTE_ADDR to the actual
client IP address is generally simple:

class ReverseProxy(object):
 def process_request(self, request):
 request.META['REMOTE_ADDR'] = # [...]

where # [...] depends on your environment. This middleware should be
close to the top of the list:

MIDDLEWARE_CLASSES = (
 'path.to.ReverseProxy',
 # ...
)

Then the @ratelimit decorator can be used with the ip key:

@ratelimit(key='ip', rate='10/s')

Ratelimit keys

Alternatively, if the client IP address is in a simple header (i.e. a
header like X-Real-IP that only contains the client IP, unlike
X-Forwarded-For which may contain intermediate proxies) you can use
a header: key:

@ratelimit(key='header:x-real-ip', rate='10/s')

Brute force attacks

One of the key uses of ratelimiting is preventing brute force or
dictionary attacks against login forms. These attacks generally take one
of a few forms:

	One IP address trying one username with many passwords.

	Many IP addresses trying one username with many passwords.

	One IP address trying many usernames with a few common passwords.

	Many IP addresses trying many usernames with one or a few common
passwords.

Note

Unfortunately, the fourth case of many IPs trying many usernames can
be difficult to distinguish from regular user behavior and requires
additional signals, such as a consistent user agent or a common
network prefix.

Protecting against the single IP address cases is easy:

@ratelimit(key='ip')
def login_view(request):
 pass

Also limiting by username and password provides better protection:

@ratelimit(key='ip')
@ratelimit(key='post:username')
@ratelimit(key='post:password')
def login_view(request):
 pass

Key values are never stored in a raw form, even as cache keys, but
they are constructed with a fast hash function.

Denial of Service

However, limiting based on field values may open a denial of service [http://en.wikipedia.org/wiki/Denial-of-service_attack?oldformat=true]
vector against your users, preventing them from logging in.

For pages like login forms, consider implenting a soft blocking
mechanism, such as requiring a captcha, rather than a hard block with a
PermissionDenied error.

Network Address Translation

Depending on your profile of your users, you may have many users behind
NAT (e.g. users in schools or in corporate networks). It is reasonable
to set a higher limit on a per-IP limit than on a username or password
limit.

User-supplied Data

Using data from GET (key='get:X') POST (key='post:X') or headers
(key='header:x-x') that are provided directly by the browser or
other client presents a risk. Unless there is some requirement of the
attack that requires the client not change the value (for example,
attempting to brute force a password requires that the username be
consistent) clients can trivially change these values on every request.

Headers that are provided by web servers or reverse proxies should be
independently audited to ensure they cannot be affected by clients.

The User-Agent header is especially dangerous, since bad actors can
change it on every request, and many good actors may share the same
value.

Upgrade Notes

See also the CHANGELOG <../CHANGELOG>.

From <=0.4 to 0.5

Quickly:

	Rate limits are now counted against fixed, instead of sliding,
windows.

	Rate limits are no longer shared between methods by default.

	Change ip=True to key='ip'.

	Drop ip=False.

	A key must always be specified. If using without an explicit key, add
key='ip'.

	Change fields='foo' to post:foo or get:foo.

	Change keys=callable to key=callable.

	Change skip_if to a callable rate=<callable> method (see
Rates.

	Change RateLimitMixin to RatelimitMixin (note the lowercase
l).

	Change ratelimit_ip=True to ratelimit_key='ip'.

	Change ratelimit_fields='foo' to post:foo or get:foo.

	Change ratelimit_keys=callable to ratelimit_key=callable.

Fixed windows

Before 0.5, rates were counted against a sliding window, so if the
rate limit was 1/m, and three requests came in:

1.2.3.4 [09/Sep/2014:12:25:03] ...
1.2.3.4 [09/Sep/2014:12:25:53] ... <RATE LIMITED>
1.2.3.4 [09/Sep/2014:12:25:59] ... <RATE LIMITED>

Even though the third request came nearly two minutes after the first
request, the second request moved the window. Good actors could easily
get caught in this, even trying to implement reasonable back-offs.

Starting in 0.5, windows are fixed, and staggered throughout a given
period based on the key value, so the third request, above would not be
rate limited (it’s possible neither would the second one).

Warning

That means that given a rate of X/u, you may see up to 2 * X
requests in a short period of time. Make sure to set X
accordingly if this is an issue.

This change still limits bad actors while being far kinder to good
actors.

Staggering windows

To avoid a situation where all limits expire at the top of the hour,
windows are automatically staggered throughout their period based on the
key value. So if, for example, two IP addresses are hitting hourly
limits, instead of both of those limits expiring at 06:00:00, one might
expire at 06:13:41 (and subsequently at 07:13:41, etc) and the other
might expire at 06:48:13 (and 07:48:13, etc).

Sharing rate limits

Before 0.5, rate limits were shared between methods based only on their
keys. This was very confusing and unintuitive, and is far from the
least-surprising [http://en.wikipedia.org/wiki/Principle_of_least_astonishment] thing. For example, given these three views:

@ratelimit(ip=True, field='username')
def both(request):
 pass

@ratelimit(ip=False, field='username')
def field_only(request):
 pass

@ratelimit(ip=True)
def ip_only(request):
 pass

The pair both and field_only shares one rate limit key based on
all requests to either (and any other views) containing the same
username key (in GET or POST), regardless of IP address.

The pair both and ip_only shares one rate limit key based on the
client IP address, along with all other views.

Thus, it’s extremely difficult to determine exactly why a request is
getting rate limited.

In 0.5, methods never share rate limits by default. Instead, limits are
based on a combination of the group, rate, key
value, and HTTP methods to which the decorator applies (i.e. not
the method of the request). This better supports common use cases and
stacking decorators, and still allows decorators to be shared.

For example, this implements an hourly rate limit with a per-minute
burst rate limit:

@ratelimit(key='ip', rate='100/m')
@ratelimit(key='ip', rate='1000/h')
def myview(request):
 pass

However, this view is limited separately from another view with the
same keys and rates:

@ratelimit(key='ip', rate='100/m')
@ratelimit(key='ip', rate='1000/h')
def anotherview(request):
 pass

To cause the views to share a limit, explicitly set the group
argument:

@ratelimit(group='lists', key='user', rate='100/h')
def user_list(request):
 pass

@ratelimit(group='lists', key='user', rate='100/h')
def group_list(request):
 pass

You can also stack multiple decorators with different sets of applicable
methods:

@ratelimit(key='ip', method='GET', rate='1000/h')
@ratelimit(key='ip', method='POST', rate='100/h')
def maybe_expensive(request):
 pass

This allows a total of 1,100 requests to this view in one hour, while
this would only allow 1000, but still only 100 POSTs:

@ratelimit(key='ip', method=['GET', 'POST'], rate='1000/h')
@ratelimit(key='ip', method='POST', rate='100/h')
def maybe_expensive(request):
 pass

And these two decorators would not share a rate limit:

@ratelimit(key='ip', method=['GET', 'POST'], rate='100/h')
def foo(request):
 pass

@ratelimit(key='ip', method='GET', rate='100/h')
def bar(request):
 pass

But these two do share a rate limit:

@ratelimit(group='a', key='ip', method=['GET', 'POST'], rate='1/s')
def foo(request):
 pass

@ratelimit(group='a', key='ip', method=['POST', 'GET'], rate='1/s')
def bar(request):
 pass

Using multiple decorators

A single @ratelimit decorator used to be able to ratelimit against
multiple keys, e.g., before 0.5:

@ratelimit(ip=True, field='username', keys=mykeysfunc)
def someview(request):
 # ...

To simplify both the internals and the question of what limits apply,
each decorator now tracks exactly one rate, but decorators can be more
reliably stacked (c.f. some examples in the section above).

The pre-0.5 example above would need to become four decorators:

@ratelimit(key='ip')
@ratelimit(key='post:username')
@ratelimit(key='get:username')
@ratelimit(key=mykeysfunc)
def someview(request):
 # ...

As documented above, however, this allows powerful new uses, like burst
limits and distinct GET/POST limits.

Contributing

Set Up

Create a virtualenv [http://www.virtualenv.org/en/latest/] and install Django with pip [http://www.pip-installer.org/en/latest/]:

$ pip install Django

Running the Tests

Running the tests is as easy as:

$./run.sh test

You may also run the test on multiple versions of Django using tox.

	First install tox:

$ pip install tox

	Then run the tests with tox:

$ tox

Code Standards

I ask two things for pull requests.

	The flake8 [https://pypi.python.org/pypi/flake8] tool must not report any violations.

	All tests, including new tests where appropriate, must pass.

Index

 I
 | R

I

 	
 	is_ratelimited() (built-in function)

R

 	
 	ratelimit() (built-in function)

 	
 	ratelimit.exceptions.Ratelimited (built-in class)

 	ratelimit.mixins.RatelimitMixin (built-in class)

 _static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/file.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		Django Ratelimit

 		Settings

 		Using Django Ratelimit

 		Use as a decorator

 		HTTP Methods

 		Examples

 		Class-Based Views

 		Class-Based View Mixin

 		Helper Function

 		Exceptions

 		Middleware

 		Ratelimit Keys

 		Common keys

 		String values

 		Callable values

 		Rates

 		Simple rates

 		Callables

 		Security considerations

 		Client IP address

 		Risks

 		Remediation

 		Brute force attacks

 		Denial of Service

 		Network Address Translation

 		User-supplied Data

 		Upgrade Notes

 		From <=0.4 to 0.5

 		Fixed windows

 		Sharing rate limits

 		Using multiple decorators

 		Contributing

 		Set Up

 		Running the Tests

 		Code Standards

_static/up.png

_static/up-pressed.png

